Benchmarking all-atom simulations using hydrogen exchange.
نویسندگان
چکیده
Long-time molecular dynamics (MD) simulations are now able to fold small proteins reversibly to their native structures [Lindorff-Larsen K, Piana S, Dror RO, Shaw DE (2011) Science 334(6055):517-520]. These results indicate that modern force fields can reproduce the energy surface near the native structure. To test how well the force fields recapitulate the other regions of the energy surface, MD trajectories for a variant of protein G are compared with data from site-resolved hydrogen exchange (HX) and other biophysical measurements. Because HX monitors the breaking of individual H-bonds, this experimental technique identifies the stability and H-bond content of excited states, thus enabling quantitative comparison with the simulations. Contrary to experimental findings of a cooperative, all-or-none unfolding process, the simulated denatured state ensemble, on average, is highly collapsed with some transient or persistent native 2° structure. The MD trajectories of this protein G variant and other small proteins exhibit excessive intramolecular H-bonding even for the most expanded conformations, suggesting that the force fields require improvements in describing H-bonding and backbone hydration. Moreover, these comparisons provide a general protocol for validating the ability of simulations to accurately capture rare structural fluctuations.
منابع مشابه
Ab initio folding of proteins with all-atom discrete molecular dynamics.
Discrete molecular dynamics (DMD) is a rapid sampling method used in protein folding and aggregation studies. Until now, DMD was used to perform simulations of simplified protein models in conjunction with structure-based force fields. Here, we develop an all-atom protein model and a transferable force field featuring packing, solvation, and environment-dependent hydrogen bond interactions. We ...
متن کاملInyestigafion of H2 Adsorption on Grapheme by DFT Methods
We optimized the geometries of the graphene and graphene with hydrogen using PW91VWN, PWCIPL,MPWLYP, G96LYP, G96141.0-210.6-310, 6-31G*Ievels of theory and compared our results with each other.We present the most important structural parameters determined for the addition of a hydrogen atom tographene and the outward movement of the carbon atom that is bonded to hydrogen is 0.48 A Also wecalcul...
متن کاملNumerical study of the radial Schrodinger Equation for Hydrogen atom using Legendre wavelet
This paper deals with the Legendre wavelet (LW) collocation method for the numerical solution of the radial Schrodinger equation for hydrogen atom. Energy eigenvalues for the hydrogen bound system is derived -13.6 eV. Numerical results of the ground state modes of wave function for the hydrogen R(r) or the electron probability density function, has been presented. The numerical results ha...
متن کاملExchange of deeply trapped and interstitial hydrogen in silicon
Using ab initio density-functional calculations, we examine possible exchange mechanisms between an interstitial hydrogen atom and a deeply bound H at a silicon-hydrogen bond. We determine a low-energy pathway for exchange, which involves an intermediate, metastable [SiH2 complex with both hydrogen atoms strongly bound to the silicon atom. The energy barrier for the exchange process is Eex,0.2 ...
متن کاملBenchmarking the performance of density functional theory and point charge force fields in their description of sI methane hydrate against diffusion Monte Carlo.
High quality reference data from diffusion Monte Carlo calculations are presented for bulk sI methane hydrate, a complex crystal exhibiting both hydrogen-bond and dispersion dominated interactions. The performance of some commonly used exchange-correlation functionals and all-atom point charge force fields is evaluated. Our results show that none of the exchange-correlation functionals tested a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 45 شماره
صفحات -
تاریخ انتشار 2014